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An approach to numerical convection is presented that exclusively yields upstream- 
centered schemes. It starts from a meshwise approximation of the initial-value distribu- 
tion by simple basic functions, e.g., Legendre polynomials. In every mesh the integral of 
the distribution is conserved. The overall approximation need not be continuous. The 
approximate distribution is convected explicitly and then remapped meshwise in terms of 
the basic functions. The weights of the basic functions that approximate. the initial values 
in a mesh may be determined by finite differencing, but the most accurate schemes are 
obtained by least-squares fitting. In the latter schemes, the weights of the basic functions 
must be regarded as independent state quantities and must be stored separately. Examples 
of second-order and third-order schemes are given, and the accuracy of these schemes is 
discussed. Several monotonicity algorithms, designed to prevent numerical oscillations, are 
indicated. Numerical examples are given of linear and nonlinear wave propagation, also 
regarding monotonicity. 

1. INTRODUCTION 

The approach to numerical convection described below (Sections 2-4) originated 
during my attempts to construct upstream-centered schemes for the conservation laws 
of compressible flow. Its roots lie in Godunov’s numerical treatment [2] of the Lagran- 
gean flow equations. 

As explained in the previous paper [l], the common finite-difference formulation is 
impractical when transforming upstream convective schemes into conservative schemes 
for compressible flow. The convective schemes of the present paper are cast in a form 
that makes a better starting point for constructing such conservative schemes. The 
actual construction of schemes for compressible flow will be discussed in the next 
installment [I l] of this series; a short description of the procedure can be found in [8]. 
The resulting schemes may be regarded as higher-order sequels to Godunov’s method. 

The present convection approach exclusively yields upstream-centered schemes. This 
is accomplished by first replacing the true initial-value distribution per mesh by a simple 
approximating function and then convecting the resulting distribution exactly. 

Besides the average value in the mesh, other parameters of the mesh functions may 
be integrated along as independent quantities, rather than being determined instan- 
taneously by finite-differencing. This has a number of advantages, one of them being a 
potentially higher accuracy. 
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Avoiding numerical oscillations becomes a trivial matter. The results on mono- 
tonicity from Van Leer [3] therefore are reformulated and elucidated (Section 5). 

Some numerical results for linear and nonlinear convection problems are displayed 
in Section 6. 

The notation used in this paper differs from the one used in previous installments. 
The reason is that, in the present approach, mesh averages play the role that in the 
usual finite-difference approach is assigned to nodal-point values. The new notation 
is compiled in Table 1. 

TABLE I 
Notation Used in the Grid 

Symbol Definition 

x,, + iAx, mesh boundary 
x,, + (i + +)Ax, mesh Center 
Initial time level 
to + At, final time level 
Average value of w in mesh (xi , x~+~) at to 
Average value of w in mesh (xi , xi+J at t’ 
Average value of w at the boundary xI during time step 
wi+W*) - K-(1/*) 
Average gradient of w in mesh (xi , xr+r) at to 
Average second derivative of w in mesh (xi , xi+3 at to 
At/Ax, mesh ratio 
ha, signed Courant number 

2. SECOND-ORDER SCHEMES 

In Godunov’s first-order scheme [2] for the Lagrangean equations of ideal compres- 
sible flow, the fluid is described as a sequence of slabs rather than a sequence of point 
probes. When the scheme is applied to the single linear convection equation 

(1) 

where a is a constant, it boils down to the following procedure. 

Step 1. Given the complete initial-value distribution W(tO, x), determine the mesh 
averages 

1 
1 
xi+1 

E<+(m) = dx IxI fVt”, 4 dx. (2) 

Step 2. Replace the original initial-value distribution by the piecewise constant 
function 

w(tO, x) = ~i+hiz) 7 xj < x < xj+1. (3) 

Colloquially sneaking, we have homogenized the slabs. 
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Step 3. Starting from the approximate initial values (3), integrate Eq. (1) over a 
finite time-step At. This is achieved by shifting the distribution w(tO, x) over a distance 
a At = u Ax along the x-axis: 

W(t’, x) = w(t0, x - (5 Ax). (4) 

In view of the probable application of the scheme to systems of equations it is practical 
(although not necessary) to restrict u by the usual Courant-Friedrichs-Lewy (CFL) 
condition 

loI < 1. (5) 

Thus, the shift will never be greater than dx. 

Step 4 (= Step 1). Determine the new mesh averages 

1 
i 

xi+1 
,i+up, = _ 

Llx si 
H’(t’, x) dx. (6) 

These steps are illustrated in Fig. 1. 

-1 0 1 x/Ax 2 -1 0 0 1 2 -1 0 01 2 -1 0 1 2 

FIG. 1. The first-order upstream-centered scheme. (1) Determining the mesh averages (broken 
line) of the initial-value distribution (solid line). (2) The approximate initial-value distribution before 
(solid) and after (broken) convection over a distance odx. (3) Determining the new mesh averages 
(broken) of the convected distribution (solid). (4) The initial values for the next time step. 

The numerical outcome of the above procedure is 

ipI2 = 1 (1 - 10 1) ‘5;,,, + 1 0 1 w-,,* = w,,, - od,iG if u>O, 

(1 - j (3 I) iTl:e + j u 1 \&,, = iv,,, - Ud,lT if u < 0. 
(7) 

This is precisely the upstream-centered scheme of Courant, Isaacson, and Rees 
(CIR) [4] applied to mesh averages of w instead of nodal-point values (cf. Van Leer 
[L Eq. WI). 

Scheme (7) can also be related to the integral version of Eq. (1) in one space-time 
mesh, that is, to 

.x1 
J 

tl 
w(t, x) dx I s 

tl Xl 
+ aft, x) dt = 0. (8) 

20 to to % 

This equation is equivalent to 
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where the angled brackets denote averaging over the time step. Equation (9) is impor- 
tant in formulating the scheme for conservation laws (cf. Section 6). With the piece- 
wise constant initial values (3) we get 

(awi) = 
i 

a~,-(,/,) if a 3 0, 

if a < 0, 
(10) - 

awi+(lh) 

and the familiar form (7) results. Note that, while Eq. (9) is exact, scheme (7) is only 
first-order accurate since the time averages (awi) are derived from the crudest possible 
approximation of the true initial-value distribution. 

Once we recognize this, extension of the scheme towards a higher order of accuracy 
becomes a straightforward matter. All we have to do is replace the true initial-value 
distribution FV(tO, x) by a piecewise approximation that has a higher order of accuracy 
than (3). In view of Eq. (2), where the mesh average of W is defined with respect to a 
constant weight function, it seems natural to further approximate W piecewise in 
terms of Legendre polynomials: 

4O, 4 = Wi+(1/2) + (h)d+cl,z) 
x - xi+(1/2) + (b2)i+(l,2) I(" -+;y 

iA.Y ) t 
2 _ ; + ..,) 

Xi < X < Xi+1 s (11) 

This ensures that integrating w(tO, x) with constant weight over any mesh (Xi , xii-l} 
yields the proper average Wi+(r12) . 

Let us first consider the possibilities of fitting the initial data in each mesh by a 
linear function. We may write 

)a", 4 = Zt+(1/2) + 
di+(l12)w 

Ax cx - xi+(1/2)), Xi < X < Xi+1 3 (12) 

where 

4+(1,2)" = 2 

Ax -i ) ax i+(1/2) 
(13) 

is some average of the gradient of W(t,O x) in the mesh (Xi , xi+r). The evaluation of 
this average gradient belongs to Step 1; what sort of average is taken will be left open 
for the moment. Equation (12) replaces Eq. (3) in Step 2; Step 3 remains the same. The 
new procedure is illustrated in Fig. 2. Note that w(t”, x), although smoother than in 
Eq. (3), is still discontinuous. The scheme now updates W with second-order accuracy; 
for u > 0 we get 

$12 zrz y+ 1,2 - aA,w - (u/2)(1 - u)(&,w - h,:24. (14) 

This, again, is an upstream scheme; a central-difference scheme such as the Lax- 
Wendroff [5] scheme could never result from the procedure followed above. With 
respect to the integral equation (9) we have, for 0 3 0, 

(w) = aWi-hf2) + Xl - 4 4-~112~wl. (15) 
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-1 0 1 x/ax 2 -1 0 a1 2 -1 0 0 1 2 -1 0 1 2 

FIG. 2. The second-order upstream-centered scheme (in particular, scheme III). (1) approxima- 
ting the initial-value distribution (solid line) in each slab by a linear distribution (broken line) with 
the same mesh integral. In this case the slopes are determined by least-squares fitting. (2) The ap- 
proximate initial-value distribution before (solid) and after (broken) convection over a distance crdx. 
(3) Determining the new linear distributions (broken) in each mesh by least-squares fitting to the 
convected distribution (solid). (4) The initial values for the next time step. 

The quality of scheme (14) varies considerably with the choice of dw. I shall demon- 
strate this on the basis of three examples. It is assumed everywhere that u > 0. 

SCHEME 1. Determine iflu by central differencing of W: 

4+(1;2W = B&+(2 ‘2) - Q-(1,,)) = #l&G + L$+,E). 

Inserting this into Eq. (14) yields 

(16) 

w2 = z1,2 - ud,w - (u/4)(1 - u)(d,i-? - A-,rj), (17) 

which is just the finite-difference scheme of Fromm [6] applied to mesh averages of w 
instead of nodal-point values (cf. Van Leer [l, Eq. (34)]). Denoting a translation over 
+dx by the operator T, we may write (17) as 

w2 = {I - u( 1 - T-l) - (u/4)(1 - u) z-(1 + T-1)(1 - T-1)2} w,,, . WI 

SCHEME IL Determine dw by differencing w(t”, x): 

Ji+(1j2)W = W(tO, Xi+1) - W(tO, Xi). (1% 

Defined this way, the quantity dw is independent of the quantity W and must be inte- 
grated along, requiring a separate storage location. Unlike what we are used to in 
Snite differencing, the scheme for updating dw differs from the scheme for updating F. 
We have 

m2w = d,w + (4 - u)(ifl:,w - hl12W), 

and the full scheme defined in Eqs. (14) and (20) can be written as 

(gy2 = ( 
1 - u + UT--~ -(u/2)( 1 - a)(1 - T-1) w 

1 - T-1 (4 - a)(1 - T-1) I( > irw 1,2 * 

The matrix occurring in this equation will be called G”. 

(20) 

(21) 
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The above scheme has one peculiarity: for vanishingly small Courant number it 
yields a nonvanishing change in dw. This is a consequence of the discontinuities in 
w(tO, x) at the mesh boundaries. The scheme wants to annihilate these discontinuities 
by adjusting the gradients in each mesh, and will ultimately succeed if applied often 
enough (that is, with u = +O). I shall come back to this property in the error analysis 
of the scheme in Section 3. 

SCHEME III. Determine &V such that in each mesh w(t O, x) has the same first moment 
as IV(tO, x). Thus, the integrated square error in the approximation of W is minimized 
per mesh, with respect to a constant weight function. In formula, 

WOO, 4 . (x - xi+d dx. 
Again, dw is independent of W. The scheme for updating dw becomes 

d-w = (1 - a)(1 - 20 - 2a3 &,, w - ~(3 - 60 + 2~3 d-,,,w + 6u(l 

and the full scheme III can be written as 

- 4 AOR 
(23) 

l--afar-l -(u/2)(1-u)(l-T-1) - 

6u(l-u)(l-T-1) (l-u)(l-2u--2~3 - u(3-6u+2u2) T-l 

(22) 

The matrix occurring in this formula will be called Gut. 
(24) 

3. ACCURACY OF THE SECOND-ORDER SCHEMES 

In order to compare the accuracy of the three sample schemes of Section 2, let us 
assume oscillatory initial values 

W(t”, x) = Wooe2rriz/~ = Ww&zld~, (25) 
with 

a = 2rr Ax/l. (26) 

Without yet specifying the values of W and dw we know that 

T = &a. 

Scheme I boils down to multiplication of Z,,, with the amplification factor 

(27) 

gr=l-u ip+2? ( cos a 1 (1 - cos L-X) 

* ( 3 - u 2 l - u cos CII A-u --- 
2 1 sin (Y. (28) 
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For each of the schemes II and III we find two distinct amplification factors, namely, 
the eigenvalues g:‘, gl’ and g:“, gi” of the matrices G” and Gm defining those schemes. 
Their values are 

g I1 1.2 = e-ia/2[& cos(o1/2) + i(1 - 20) sin(a/2) 
* i)(i + 4u - 4a2 + (4 - 40 + 402) cos a}q (29 

g II1 
1.2 

= e+i2[(1 - 3u + 3~3 cos(ar/2) + i(1 - 2u)( 1 + u - u2) sin(a/2) 
* a(1 - u)(2(5 + u - u2) - (1 + 2u - 2u2) cos (31 - 3i(l - 2~) sin c$J/~]. 

(30) 
For any properly upstream-centered scheme we can prove that the amplification 

factors satisfy the equation 
g(l - u) = e-‘ag*(u), (31) 

in which the asterisk denotes the complex conjugate. One may check this for the factors 
given in (28), (29) and (30), and for the factor in the exact solution 

W(tl, x) = e--io~W(to, x). (32) 

Equation (31) is equivalent to the pair of symmetry relations 

I gu - 41 = I ddl, (33) 

arg g(l - u) + (1 - U)CX = -{argg(u) + UCX). (34) 

Equation (33) implies that [ g(u)1 has an extremum for u = 4, which turns out to be a 
minimum. Hence, the dissipative error per time step, 1 - 1 g(u)l, has a maximum. 
On the other hand, Eq. (34) shows that the phase error per time step, arg g(u) - ( -UCZ), 
goes through zero for u = 4, regardless of the value of 01. More generally, the result of 
a time step with u = CT’ followed by a time step with u = 1 - u’ has the correct phase 
--01. This is a quantitative formulation of the property Fromm [6] indicated by saying 
that scheme I-has a “zero-average phase error.” 

Given this dependence of the errors on u, it is practical to confine ourselves to 
comparing the dissipation of the schemes for u = 4, and their dispersion for u -+ 0. 

With u = & we find from Eqs. (28-30) that 

1 g’ 1 = I($ - $ cosa) cos(cX/2)1, (35) 

I g:$ I = I a cos(4) f g(s - t cos my2 I, (36) 

) g;t; ] = ) & cos(ar/2) f g(g - * cos ay2 I. (37) 

In judging the accuracy of schemes II and III, only g:’ and g:” (with the plus sign) are 
relevant. For small 01 we obtain 

1 g’ 1 = 1 - 301”/128 + O(OL~), (38) 

1 g;’ 1 = 1 - 01~/128 + O(d), (39) 

1 ,;I1 1 = 1 - a4/384 + O(d). (40) 
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0.5 

FIG. 3. Dissipation in schemes I-V. Polar plots of the damping factors per time step I gl*lv I, 
1 g:’ 1 and 1 g:“.” I as a function of the wavenumber o! = 2wAx/f of the wave, for Courant number 4. 

As could be expected, the error decreases from scheme I to scheme III. Polar plots of 
I g’ (, I g:’ I, and ( gin I are given in Fig. 3. 

In order to understand the meaning of the remaining amplification factors gilB1l’, 
consider for instance scheme III. Its eigenvalues g:” and gilI correspond to the eigen- 
vectors 

0111 
11 

~111 3 
1 

i 1-t 

cos(a/2) + (7/6 - (cos a)/6}‘/” 
- 2 cos(a/4) 

1 
, (41) 

111 
%2 4i sin(Ly/4) 
vIII 

21 

0 ( 

4 sin(a/4) 
vIII = 

2 - 
zzz cos(a/2) + {7/6 - (cos IX)/~}~/~ . (42) 

111 
-12i 

022 2 cos(or/4) 1 

The vectors have been normalized such that they do not vanish for any value of ol; 
otherwise the normalization is arbitrary. The eigenvectors ,:I1 and vxl’ in turn define 2 

eigenfunctions Vjl’ and VilI: 

,;‘I = v;;* + v;‘: y , 

yrrr = vIII + vIII x - x 
2 21 23 Jy * 

Any piecewise linear approximation of the oscillatory initial values (25) can be written, 
per mesh, as a combination of Vj” and Vi”. 

The meaning of these eigenfunctions is clarified in Fig. 4. On top, an oscillation 
with wavelength 1= 6 dx (that is, 01 = ?r/3) is approximated by 

- 
w(tO, x) = -p v;*yx; x = xi+(1,2)), xi < x < Xi+1 . 

11 

The slopes of the line segments used in the meshes neatly follow the wave present 
in the mesh averages. Next, the same wave is approximated by 

- 
w(tO, x) = -$g@ v;“(x; x = xi+fl12)), Xi < X < Xii-1 . 

21 

The slopes of the line segments now are inconsistent with the mesh averages. They 
bear the wrong sign and, as seen from Eq. (42), remain finite when LX vanishes. 
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FIG. 4. Piecewise approximation of the function cos(ax/dx) by the eigenfunctions of scheme III 
for 0~ = 43. Top: using the eigenfunction VI ur. Bottom: using the eigenfunction Vi”. Note the different 
scaling of W. Further description in Section 3. 

When approximating the initial values (25) according to scheme III, we find that 

w(tO, x) = 11 + + (1 - $ cot T) X -;:+(i/2)/ Wi+(l,2) ) xi < x < xi+1 . 
(47) 

The component -Viii in this function (I call it “stegosaur bias”) has a weight O((Y~), 
in accordance with the second-order accuracy of scheme III. This component damps 
out quickly, since 

1 gf’ ( = 4 + O(G). (48) 

A similar story can be told about scheme II. This scheme is more dissipative than III; 
it damps out stegosaur bias essentially in one step, since 

1 g;’ 1 = O(G). (49) 

Turning to the dispersive errors, let us de6ne the velocity ratio w: 

w = numerical convection speed = arg g - (-CKY) - 
exact convection speed -UCi 

In the limit of u -+ 0 we find 

WI = {(Q - + cos a) sin ~]/Lx = 1 + a2/12 + O(a4), (51) 
~0: = 2 tan(or/2)/or = 1 + or2/12 + 0(01~), (52) 
co;11 = [((27$ - 5 cos a - 2 co? a)li2 - (-3 + 5 cos a + co3 a)}liz - sin CX]/~ 

= 1 + 01~/270 + O(C@). (53) 

Polar plots of these values are given in Fig. 5. 
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FIG. 5. Dispersion in schemes I-V. Polar plots of the ratios WI, w:r, UJ:~~*“, and WI” of numerical 
and exact convection speeds as a function of a, for vanishing Courant number. 

It follows from Eq. (52) that the convection speed implied by scheme II becomes 
infinite for certain values of CL This relates to the property of scheme II to yield a 
finite change in dw even for a vanishingly small time step. In contrast, scheme I 
yields a zero convection speed for some values of 01. Scheme III is so accurate that it 
can stand comparison with the third-order schemes of the next section. For instance, a 
comparison of Eqs. (53) and (65) shows that the convective error for CJ - 0 in the 
finite-difference scheme IV is a factor 9 larger than in scheme III. For cr = +, scheme IV 
is identical to scheme I and therefore, again, less accurate than scheme IIT. 

When examining g:” more closely, it appears that c$I has an error O(a4) for any 
value of u. That is, scheme III is third-order accurate with respect to the eigenfunction 
I’;“. Nevertheless, scheme III must be called a second-order scheme, since the least- 
squares approximation of arbitrary initial values always introduces an amount 
0(a3) of stegosaur bias, which is convected with zero-order accuracy. Furthermore, in 
nonlinear convection problems, even if initially absent such bias will be created during 
each time step. 

The above analysis, although by no means exhaustive, clearly shows that scheme III 
is superior to both other schemes as regards accuracy. It is undoubtedly also the most 
time-consuming scheme, in particular when applied to nonlinear convection equations. 
Scheme II is less dissipative than scheme 1 but equally dispersive, which makes the 
reduction in dissipation of questionable value. It further behaves peculiarly for u - 0. 
Its main advantage over scheme I is that it involves only one mesh in determining dw, 
just as scheme III. 

However, the comparison between I and II definitely goes in favor of the latter, if 
these schemes are considered in conjunction with one of the monotonicity algorithms 
of Section 5. Any of those will bring the infinite wave speed, yielded by scheme II for 
01 = 7r, down to a finite value close to the correct one, while such algorithms can not 
raise the zero wave speed yielded by scheme I. Furthermore, they provide a strong 
extra dissipation where needed to prevent dispersive ripples, so the lower general 
level of dissipation in scheme II no longer is a disadvantage. 
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The convenience of updating di+(llejw solely with information from the mesh 
(xi, xi+3 appears clear when boundary conditions have to be met. In the case of 
positive a it suffices to prescribe the value of 10 as a function of time at the left-hand 
boundary. No “virtual mesh” across the boundary need be invoked, and the scheme 
applies without change to the leftmost mesh. At a right-hand boundary no special 
values are needed. 

Another favorable consequence is that a disturbance in some mesh makes itself felt 
only in downstream meshes. This is called the “transportive property” by Roache and 
Mueller [7]. 

Finally, note that all schemes may as well be formulated with respect to a moving 
grid. 

4. THIRD-ORDER SCHEMES 

It is useful to investigate how much is gained in going to the third order of accuracy. 
Third-order schemes result if we fit the initial values in each mesh by a quadratic 
polynomial. Defining some average second space derivative 

Z++(112P - a2w 
( 1 w2 - ax2 ifh12) ' 

(54) 

we may write the approximate initial values in the mesh (xi , xi+r) as 

4t09 4 = Wi+(1/2) + 4+(112P 
x - Xif(l/f) + ; ~+(l,2)w I(" -;;(I/2))2 _ &I* 

Ax 

The corresponding scheme becomes 

$12 = w 112 - ud,,i; - (u/2)(1 - u)(&,w - h,,,w) 

- (a/12)(1 - a)(1 - 2U)(4& - d’,,,w). (56) 

With respect to Eq. (9) we have 

(UWj) = a{ic-(,,,) + g(1 - u) 6i-(1,2)lC + &(l - a)(1 - 20) &1,2)u’}. (57) 

The third-order successor to scheme I is the finite-difference scheme IV, with dw 
defined as in Eq. (16), and 

zf+(l f2)W = dj+lw - Ll Jc. (58) 

It can be written as 

iw2 = { 1 - a(1 - T-l) - (u/4)(1 - u) ?-(I + T-1)( 1 - T-l)2 

- (u/12)(1 - u)(l - 2u) T( 1 - T-1)3} WI,, . (59) 
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A particularly attractive scheme results if we let the quadratic functions assume the 
values W(t”, xi) at the slab boundaries, so that the overall approximation becomes 
continuous. The average first derivative again follows from Eq. (19), while the second 
derivative is determined by 

E r+(l ,)w = 6tW”, xi) - 2%+(,/,) + W”, xi+d. WO 

Scheme V, as I shall call it, is based on two independent quantities, namely, Wi+(l/d 
and wi . Updating Wi is done according to 

Wi = W(tl, Xi) = E(-(I/*) + (4 - u, 6*-(1f2)w + 3(“” - u + iI1 Z-Cl/2)w’ C61) 

Using Eqs. (56), (19), (60) and (61) we can write scheme V as 

(““+y) = ( (l-u)(l+a-2u2) + u2(3-2u)T-l -u(l-u)Z-(l-~-l)(l-u-uT-l) 
6u(l -u)Z=l (l-u)(l-30) - 0(2-3u)Tl ) 

The matrix defining this scheme will be called G”. 
The third-order successor to scheme III is the least-squares error scheme VI, with 

dw as in Eq. (22), and furthermore, 

j-‘*+I w(fO, x) . 1(x -;;(1,21)2 - Al dx 
z+(I,2)W = 2 %a 

x - Xi+(1/2) 

Ax 

360 “+I 
=dx ci j- W(t”, x) - I(” -;;(1’2))2 - Al dx, 

a quantity independent of iCi+(l,2) and d,+uw,w. In spite of its inherent accuracy I shall 
not discuss this scheme here in detail. For a single convection equation it may be 
profitable; however, its value for the ideal compressible flow equations at present 
seems doubtful. Quite probably the scheme is beyond the point of diminishing returns, 
because of its complexity. 

The amplifkation factor of scheme IV is 

g’” = 1 - -$ (1 - cos IX){ 1 + 3u - u2 - (1 - CT”) cos fX} 

. -*u --- 
( 
4 - u2 

3 
1 - u2 cos (y 

3 1 
sin o1 

(64) 
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As seen upon comparing Eqs. (59) and (18), scheme IV reduces to scheme I for 
u = 3. Therefore, the dissipation in that case is given by Eq. (35), with the superscript I 
replaced by IV. The dispersion for u ---f 0 in scheme IV is given by 

dv = {(Q - +cos a) sin CX)/BZ = 1 - a4130 + O(CY~), (65) 

somewhat disappointing when compared to result (53) for scheme III. A plot of WI’ 
is included in Fig. 5. 

The amplification factors of scheme V are the eigenvalues of the matrix G” occurring 
in Eq. (62). These turn out to be identical to the eigenvalues of Gin, given in Eq. (30). 
Scheme V therefore has exactly the same dissipation for (T = 4 and dispersion for 
(T = 0 as scheme III. That is, they are given by Eqs. (37) and (53), with the superscript 
III replaced by V. Nevertheless, scheme V, being a genuine third-order scheme, is 
more accurate than scheme III. That is, when arbitrary initial values are approximated 
according to scheme V, the awkward eigenfunction V,” corresponding to gi gets a 
weight of only 0(a4). 

Scheme V, therefore, is the most accurate of schemes I-V, and by virtue of its 
computational simplicity, also the most economical one. This becomes even more 
true when the scheme is applied to ideal compressible flow problems: it takes less 
execution time than any of the other schemes (see [8]). It is tempting to just skip the 
second-order schemes and concentrate on scheme V. I have resisted this temptation 
because the second-order schemes are very instructive and most of my experience still 
lies in these schemes. Another consideration is that scheme V loses part of its simplicity 
when used in conjunction with one of the monotonicity algorithms of Section 5: in 
meshes where the monotonicity condition is enforced, the overall continuity of the 
initial-value approximation must temporarily be broken. 

The question remains whether it is fair to compare, say, scheme V to scheme IV 
on the basis of the same mesh width. If computer storage space is the decisive factor, 
scheme V should be judged on the basis of the double mesh width, since it also uses 
double information per mesh. This raises its dispersive error coefficient for long waves 
from l/270 to 16/270 = l/17, which is nearly twice the value l/30 derived for 
scheme IV. However, from Fig. 5 it can be seen that for waves of length 56 (single) 
meshes, scheme IV again has the larger dispersion. 

Furthermore, to achieve the error quoted for scheme IV, four times as many meshes 
in time-space are used as to achieve the error quoted for scheme V. Since the schemes 
have about the same execution time per mesh per time step, scheme V remains the 
most efficient one. This applies even more strongly to the many-dimensional case. 

Schemes I-VI are examples of using a polynomial of degree n to achieve a truncation 
error of the order n + 1. In satisfying ourselves with a truncation error of the order n, 
a degree of freedom becomes available for meeting some extra mathematical or 
physical requirement (e.g., an additional error bound or conservation law). 

Of course, other functions than polynomials may be used as the basic approximating 
functions. Monotonic functions such as (exp CX)/C appear to be valuable in approxi- 
mating initial values without creating oscillations (a simpler way to reach the same 
goal is indicated in Section 5). When dealing with a nonlinear convection equation 
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we may select basic functions for which the integration of the equation according to 
Step 3 is particularly simple (see Section 6). 

I do not intend to consider the use of splines, since these destroy the local character 
of the initial-value approximation and the explicit character of the scheme. 

5. MONOTON~CITY 

The monotonicity condition says that, when a monotonic initial-value distribution 
is numerically convected, the resulting distribution must be monotonic again. In 
consequence, if Wi+(l/z) lies between iG-(i ,*) and M’i+(3j2) , then i?+(i~*) must lie between 
+'1/2, and $+(3/2) 

In practice it is easier to deal with the following suficient requirement: if M?f+(l,2) 
lies between Wi--(1,2) and Wi+(3/2) , then \G+(1/2) must lie between ~~-(i,~) and Ki+(l,2) 
for 0 < u < 1 and between Wi+(312) and CCi+(112) for -1 < u < 0. This has been the 
starting point of two preceding papers [3,9]. In [3], Fromm’s scheme was made 
monotonic through the inclusion of a third difference with a coefficient depending on 
the rate of change of the first difference, that is, on L$+~W/LI&C. In the present approach 
we may think of this term as a means to reduce the value of 6i+(1,2)w below the value 
given in Eq. (16). 

With the help of Fig. 2 it is easily found that, regardless of how if~+(i12)w is defined, 
its value must be limited as follows: 

(a+(1 ‘2P’),,,. = 

1 

mid2 I di$ I, I ifi+m2) 11’ I, 2 I &+lz I) w 4+hf2)~~ 
if sgn A# = sgn Lli+liG = sgn di+(ilejw, w-3 

0 otherwise. 

This prescription is valid for positive as well as negative values of o; any dependence 
on CJ has been removed. 

Equation (66) says in the first place that, in order to preserve the monotonicity of a 
sequence of mesh averages, the linear function (12) must not take values outside the 
range spanned 6y the neighboring mesh aoerages. 

If W reaches an extremum in the mesh considered, that is, if sgn diW f sgn di+iW, 
then dj+(l.e)w is reduced to zero in order not to accentuate the extremum. This further 
guarantees that w, if initially positive, remains positive. 

The use of (66) also yields extra damping of stegosaur bias, characterized by 
sgn d&G = sgn Lli+lW # sgn ifi+(i12jw. 

The limiting effect of Eq. (66) in the three distinct cases is illustrated in Fig. 6. 
Equation (66) corresponds to the minimum third-difference coefficient given in 

13, Eq. (27)]. The larger coefficient given in [3, Eq. (28)] yields a stronger reduction of 
dw. It applies exclusively to the Fromm scheme I, in which dw is expressed solely in 
terms of AK. In the present approach we find the surprising formulation 

I 
24w LljiliG 

(&+cl,2)w),ono = &F + Ai-clE if sgn A&J = sgn Lli+lK, 
(67) 

0 otherwise. 
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In words, monotonicity may be preserved by taking for iif+(112)w the harmonic mean of 
di,V and di+lrz? rather than the algebraic mean, as in Eq. (16). This result ought to 
clear up most of the mystery about monotonicity. 

-1 0 1 x/Ax 2 -1 0 1 2 -1 0 1 2 

FIG. 6. The monotonicity condition (66) for the second-order scheme. (1) The slope of the linear 
distribution (solid line) in the mesh (x0, xl) is reduced (heavy solid line) so that the values in this 
mesh do not go beyond the average levels (dotted line) in the adjacent meshes. (2) If the mesh average 
reaches an extremum, the slope is reduced to zero. (3) If the slope does not agree with the trend in 
the mesh averages, it is also reduced to zero. 

It is possible to make the limiting action of (66) about as strong as that of (67), 
through replacement of the factors 2 occurring in (66) by 3. 

The monotonicity algorthm (66), while derived for uniform convection through a 
uniform grid, remains valid for a nonuniform grid and for a broad class of convection 
equations with variable a. A numerical example of its use in connection with the non- 
dissipative Burgers equation 

where 
d( &w2) 

a=hc=W’ (6% 

is given in the next section. 
For variable a the CFL condition (5) used in connection with Eq. (66) must be 

reformulated. It is most accurately expressed as: no convection path may cross more 
than one mesh boundary during a time step. 

I have not been able to determine in general for what functions a(t, x, w) the limiting 
effect of Eq. (66) suffices to ensure monotonicity, and for what functions it does not. 
The cases I have found where monotoncity is broken in spite of the use of Eq. (66) 
all are very contrived. In these counterexamples the deviation from monotonicity 
occurs in a mesh where the Courant number approaches unity; the new extremum 
merely sticks out a fraction O(Ba) of the differences dW involved. It may be avoided 
through a reduction of dt by a comparable fraction. This extra restriction on the size 
of the time step must not be considered too serious; in practice, the safety margin of 
dt with respect to the stability limit is more likely taken to be a fraction O(da). 

For the third-order scheme (56), a sufficient monotonicity condition may be formu- 
lated in just the same manner as for the second-order scheme (14): the quadratic 
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function (56) must not take values outside the range spanned by the neighboring mesh 
averages. 

It must be mentioned here that a highly successful method to preserve monotonicity 
has been developed by Boris and Book [lo]. The basic idea underlying their Flux- 
Corrected Transport (FCT) technique is the following. First, w is updated provisional- 
ly with a monotonic first-order scheme. Next, terms are added that bring second-order 
accuracy, but these are subjected to a limiting routine in order to preserve the mono- 
tonicity of the provisional results. 

We may try out this technique, too, on our second-order scheme (14), using the 
embedded CIR scheme (7) as the monotonic first-order scheme. For cr 3 0 we first 
have 

iw* = w,;, - od,w (70) 
and subsequently 

$12 = +/2* 
- f (1 - U>C4,2, - L12~~),o,o 5 (71) 

where 

(4+c1,2,)mono 

min I 2 
= a(1 - 0) 1 Lli+2W* / sgn di+(1,2~w 

I 
if sgn diW* = sgn Lli+2W* = sgn 6i+(1,2~ul, (72) 

0 otherwise. 

The explicit dependence on (T may be removed by adjusting the limiting effect to the 
minimum value of the factors 2/{a(l - u)}: 

1 

min(8 ] diW* I, 1 di+(l/z)M’ 1, 8 1 di+‘W* I} sgn di+(l/z)W 
(di+Cl12)w),,,, = if sgn Ll%* = sgn D+‘iG* = sgn di+(l/z)n’, (73) 

0 otherwise. 

Note that these formulas are downstream centered; for u < 0 the differences di-%* 
and D+lW* must enter. 

In order to decide which of the limiters presented so far is best suited for use with 
scheme (14), let us compare the different formulas. A disadvantage of (72) and (73) 
seems that these algorithms involve data from four meshes, while (66) involves only 
three. On the other hand, Eqs. (72) and (73) appear to allow of much larger gradients 
inside the meshes than (66). The reason is that (72) and (73) take into account what 
value of u will be used in the next time step; the dependence of (73) on u is hidden in 
the W* values. 

A fairer comparison results if such dependence on u is also included in (66). The 
condition then reads, for u > 0, 

min 
(6i+(l/2)1v)~~~~ = 

I I 4+lW II en 4+(lj2)~~7 
if sgn fl&? = sgn di+rW = sgn d,+(l,2)~~, (74) 

0 otherwise. 



292 BRAM VAN LEER 

Note that the weights of 1 diir; 1 and 1 di+lM! 1 differ; for u < 0 they become 2/(1 - 1 u I) 
and 2/l c 1, respectively. The limiting effect of (74) is now comparable to that of (72). 

On the basis of their performance in the numerical examples of Section 6, I tend to 
prefer the upstream-centered limiters (66) and (74), in particular because they seem 
to introduce no phase errors of their own. However, it must yet be investigated whether 
they will remain the most practical when used for compressible flow problems. 

6. NUMERICAL EXAMPLES 

The performance of schemes I, III, and V was investigated in a series of simple 
numerical experiments. 

First, triangle and square waves of wavelength I= 12dx were convected according 
to the linear equation (1) using schemes I and III. Periodic boundary conditions were 

FIG. 7. Convection of a triangle wave by scheme I (top row) and scheme III (bottom row). 
No monotonicity enforced. 

FIG. 8. Convection of a square wave by scheme I (top) and scheme III (bottom). No monotonic- 
ity enforced. 
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applied. The final results plotted in Figs. 7-13 are for f = T = l/a, when the waves 
should have traveled their own length once. The full distributions have been drawn; 
any claims to monotonicity refer to sequences of mesh averages. In all cases a Courant 
number & was used, so that both dispersive and dissipative errors would show up. 

Figures 7 and 8 show the superiority of scheme III over scheme I, especially regard- 
ing the preservation of the higher harmonics in the waveforms. For scheme I, the 
positive phase error in the fundamental wave is detectable. Note the difference in the 
initial values for these schemes. 

0 I 6 9 123 3 6 9 UP -3 6 9.ilrn 
FIG. 9. Convection of a triangle wave by scheme I (top) and scheme III (bottom), using the 

monotonicity algorithm (66). 

I 1 I 
0 3 I 0 v.3 3 5 9 720 --- I 9 X,&X R 

FIG. 10. Convection of a square wave by scheme I (top) and scheme III (bottom), using the 
monotonicity algorithm (66). 

Figures 9 and 10 show the effect of the monotonicity algorithm (66) on the results of 
schemes I and III in the same cases as before. Note that the initial values are now the 
same for both schemes. The difference between the performances of I and III is 
largely masked by the effect of Eq. (66). The extrema of the triangle waves are strongly 
eroded, because those are in fact treated with the &t-order scheme (7). As desired, 
the square waves no longer show the overshoots present in Fig. 8. For scheme I, the 
use of Eq. (66) appears to slow down at least the crests of the waves. 
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In Figs. 11-13 various monotonicity algorithms are evaluated on the basis of scheme 
III. In Fig. 1 I the results of Eq. (66) for the triangle wave are repeated (top row) and 
compared with the results of Eq. (73) (FCT, bottom row). These results are very much 
alike, although the FCT algorithm introduces a detectable extra phase lag. 

FIG. 11. Convection of a triangle wave by scheme III, using the monotonicity algorithm (66) 
(top) and the FCT algorithm (73) (bottom). 

The internal slopes drawn for t = T could be fixed according to Eq. (73) only after 
an extra time step was carried out with the first-order scheme (70). The implicit depen- 
dence of condition (73) on u is easily detected from the distribution at t = T. In mesh 
(x4 9 x5) the overshoot with respect to the neighboring average level Wat will not 
cause ii~~+ to rise above W3* for 0 = 4 (the value used), but would do so if the next 
step were taken with u = 2. 

0 3 6 0 RO 3 6 9 UD 3 6 9”ldXtz 

FIG. 12. Convection of a triangle wave by scheme III, using the monotonicity algorithm (74) 
(top) and the FCT algorithm (72) (bottom). 

In Fig. 12 the results of Eq. (74) for the triangle wave are compared with those of 
Eq. (72) (FCT). Both formulas depend explicitly on cr. The results are clearly better 
than those in Fig. 11, with the FCT algorithm again yielding the largest phase error 
and, in this case, also the largest amplitude error. 
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Particularly obvious in Fig. 12 is the clipping of an extremum down to a plateau, 
an effect shared by all monotonicity algorithms tested. It would be extremely valuable 
if a more sophisticated algorithm were developed that can distinguish between a 
point extremum and a plateau. In the present schemes such an algorithm would involve, 
apart from AiS and di+iW, also 6i-(1j2) and di+(3,2j~ in determining the largest 
permitted value of di+(llz)~. 

Figure 13 shows the monotonicity techniques at their best, that is, when applied 
to a square wave. In this case Eq. (73) (FCT) is the better of Eq. (66), while the results 
of Eq. (72) (FCT) and Eq. (74) are perfectly identical. Note that (72)-(74) do not ensure 
the positivity of the entire distribution inside a mesh (cf. mesh (x1,, , xii)). 

FIG. 13. Convection of a square wave by scheme III, using the monotonicity algorithms (66) 
and (74) (top) and the FCT algorithms (73) and (72) (bottom). 

Next, some experiments were done with schemes III and V on the basis of the non- 
dissipative Burgers equation (68). The nonlinear versions of these schemes are given 
below. 

Scheme III. The initial-value distribution in any mesh (xi , x~+~) is linear, with 
slope di+(llz)~/dx. Using a linear basic function is particularly convenient, since it 
remains linear when convected according to Eq. (68). Only, its slope becomes multi- 
plied, per time step, by l/(1 + Aifi+(l,l) WV), where h is the mesh ratio At/Ax. Note that 
for 

tiw < -1 (7% 

the distribution will steepen into a shock within one time step. However, if w nowhere 
changes its sign, the case (75) will always be excluded by the Courant condition 

XI w 1 < 1. (76) 

Henceforth w is assumed to be positive. 
In updating W we use the integral (conservation) form of Eq. (68): 

,-i+U/2) = R 
i+c1/2, - Wwf+,) - Gw,2>), (771 

comparable to Eq. (9) from the case of linear convection. 
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At the mesh boundary xi , the initial values generally are discontinuous, with 

wj- = ii;j-(1,2) + ~&(1,2)M., (78) 

wj+ = wi+(l/2J - &iri+(l12)‘2’- (79) 

Using Eq. (69) and its consequence that all convection paths are straight, it is found 
that - 

1l.j = W&/(1 + hdi-(1,2)11’) (80) 
and, subsequently, 

so that step (77) can be carried out. 
Updating dw means that we have to determine the first moment of the final distribu- 

tion FV(t’, x) in the mesh (Xi , x~+~). Two cases must be distinguished. 
If wi+ > wi-“, the initial discontinuity at xi resolves into a rarefaction fan. The final 

distribution is continuous and has the form 

s-xi &(1,2)w 
“” + As ~+hdi-(1,2Jl.t~ ’ xi < x < xi + ICY- At, 

IL’~- + {S - (.~i + Ii’i- At)>/At, xi + w- At < s < xi + uai+ At, 
,ri+1 _ Sit1 - x 4+(1,2P ~___ 

AX l + xJi+(l!*)tt’ ’ 
xi + wit At < x < xi+1 . (82) 

Now ili+(l&~ can be determined in the manner of Eq. (22). 
If rvi+ < &vi-, the discontinuity is a shock and remains such while moving into the 

mesh. Calling the final shock position xs , we find for the discontinuous final distribu- 
tion: 

xj < s < xs ) 
W(t’, x) = (83) 

x&q < x < Xjfl . 

The mesh integral of this distribution is already known (= #+(1/z) Ax), so that xs can 
be found from the equation 

& jzi+’ w(t’, x) & - $+(1!2) = 0, 
XI 

which is quadratic in xs . Once xs is known, the first moment of W(t’, x) can be 
determined and dw is updated. 

It may appear a bit strange that the complete distribution FV(t’, x) is used in deter- 
mining di+“~2~~~, while only its first moment is needed. A direct expression for the 
lirst moment of W(tl, x) can be found by integrating the following equivalent of Eq. 

a{(x - Z)w} 
at 

+ %xX - %“> =12 
ax 

2w 
2 035) 
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over one space-time mesh. The source term at the right-hand side becomes 

and it is tempting to evaluate this integral by using the integral form 

&Gi+(l/2) = lw2 
2 i+Cl/2) - 4<4wi3,J - Gwj3)) 

of another equivalent of Eq. (68), 

a(+w2) 
at 

+ a(b+) () 
ax= * 

(87) 

However, the integral form (87) of Eq. (88) is not equivalent to the integral form (77) 
of Eq. (68) if a shock occurs in the mesh. The above procedure may therefore be used 
only in the case that a rarefaction wave moves into the mesh. 

I must mention that the evaluation of 6’ z+(1/2)~ in scheme III need not be done so 
scrupulously as described here.,Various approximations may be introduced in which 
no distinction is made between the rarefaction case and the shock case, and which 
still boil down to the least-squares formula (23) in the limit of linear convection. 

Scheme V. The initial-value distribution is quadratic in each mesh and continuous 
at the mesh boundaries. If no shock is formed that passes xi during the time step, we 
may write 

where wi follows from the quadratic equation 

(~h2~_(l,*)11.)(l,‘i)2 - (1 + A@.- 8 (l/2)11’ + +d~-(l/2)N’)} lLli + ll’i = 0. (90) 

Equations (89) and (90) supply all the information to update @, dw, and Bw. 
The triangle wave of the previous experiments, superimposed onto an average level 

w = 1, was taken as the initial-value distribution for schemes III and V, again using 
periodic boundary conditions. The mesh ratio was &, so that the Courant number Xw 
on the average was also a, as before. In the exact solution the negative slope in the 
wave steepens at t = T/2 into a shock, which in the course of time reduces in strength. 
In Fig. (14) the exact solution at t = T is shown, together with the results of III and V. 
Monotonicity was not enforced. 

The shock produced by scheme III slightly lags behind its true position, while the 
shock produced by scheme V is slightly ahead of it. For h = 4 (not shown here), 
when the average Courant number in the wave becomes 4 too, these phase errors 
vanish. Both schemes then yield the shock at the right position, while the waveform is 
exactly antisymmetric with respect to the shock point. 

581/23/3-6 
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FIG. 14. Nonlinear convection of a triangle wave according to the nondissipative Burgers 
equation (68). Top: exact solution. Bottom: results of scheme III and scheme V. Mesh ratio 4. No 
monotonicity enforced. 

05 1 
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x*wa xc “SML %on x.we * 

FIG. 15. Shock profiles obtained with scheme III on the basis of the nondissipative Burgers 
equation (68), with and without use of the monotonicity algorithm (66). Mesh ratio 4. (a) Shock at 
a mesh boundary. (b) Shock in the middle of a mesh. 

Some results for A = 8 are drawn in Fig. 15. This last figure shows four shock pro- 
tiles obtained (as parts of long square waves) with scheme III. Note that these indeed 
are antisymmetric. A distinction has been made between case (a), when the shock is 
located at a mesh boundary, and case (b), when the shock occurs in the middle of a 
mesh. The adequate effect of the monotonicity algorithm (66) on the profiles is also 
demonstrated. 

7. CONCLUSIONS 

The approach to numerical convection discussed and tested in the previous sections 
has a number of advantages, which are summarized below. 

(i) Upstream schemes emerge automatically; in fact, they seem to be the 
natural way to do numerical convection. 
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(ii) For a given order of consistency, the schemes can be made considerably 
more accurate than the ordinary upstream finite-difference schemes. This is achieved 
by using the information inside the mesh to its full potential. 

(iii) In such schemes, the numerical domain of dependence does not spread 
with the order of consistency (as it does in finite-difference schemes). The CFL 
condition for this domain remains the stability condition. 

(iv) Using such schemes, a disturbance in some mesh does not show up in any 
upstream mesh (as it generally does for higher-order finite-difference schemes). 

(v) Such schemes do not change near a boundary; the exact boundary 
conditions may be specified. 

(vi) For all schemes generated, the availability of continuous functions inside 
each mesh and the freedom in choosing these make it easy to introduce extra physics 
and to satisfy special conditions. 

(vii) All schemes are fully explicit (as opposed to finite-element methods). 
(viii) The schemes are well suited for use with a moving grid. 

In the next installment [Ill of the present series I shall show how this approach 
can be followed to construct schemes for the equations of ideal compressible flow. 
An outline of the procedure is given in Van Leer [8]. 

Application of the schemes to actual incompressible flow problems becomes 
particularly interesting if diffusion can be incorporated in the present approach. 
This clearly is possible, but so far has not been investigated in detail. For the time 
being, the easiest way to account for diffusion is to combine any diffusion terms into 
a separate fractional step, using a conventional finite-difference scheme. 

REFERENCES 

1. B. VAN LEER, Towards the ultimate conservative difference scheme. III. Upstream-centered 
finite-difference schemes for ideal compressible flow, J. Computational Phys., to 23 (1977), 263. 

2. S. K. GODUNOV, Mat. Sb. 4 (1959). 271; also Cornell Aeronautical Lab. Transl. 
3. B. VAN LEER, J. Computational Phys. 14 (1974), 361. 
4. R. COURANT, E. ISAACSON, AND M. REES, Cotnm. Pure Appl. Math. 5 (1952), 243. 
5. P. D. LAX AND B. WENDROFF, Comm. Pure Appl. Math. 13 (1960), 217. 
6. J. E. FROMM, J. Computational Phys. 3 (1968), 176. 
7. P. J. ROACHE AND T. J. MUELLER, AZAA J. 8 (1970), 530. 
8. B. VAN LEER, MUSCL, a new approach to numerical gas dynamics, in “Computing in Plasma- 

physics and Astrophysics. Proceedings of the Second European Conference on Computational 
Physics.” Max-Planck-Institut fur Plasmaphysik, Garching 1976. 

9. B. VAN LEER, in “Lecture Notes in Physics,” Vol. 18, p. 163, Springer, Berlin, 1973. 
10. J. P. BORIS AND D. L. BOOK, J. Computational Phys. 11 (1973), 38. 
11. B. VAN LEER, Towards the ultimate conservative difference scheme. V. A second order sequel to 

Godunov’s method, in preparation. 


